Tensor completion and low-n-rank tensor recovery via convex optimization

نویسندگان

  • Silvia Gandy
  • Benjamin Recht
  • Isao Yamada
چکیده

In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In the important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as sparsity measure and consider the low-n-rank tensor recovery problem, i.e., the problem of finding the tensor of lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas-Rachford splitting technique and its dual variant, the alternating direction method of multipliers (ADM).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Tensor Completion from Sparsely Corrupted Observations via Convex Optimization

This paper conducts a rigorous analysis for provable estimation of multidimensional arrays, in particular third-order tensors, from a random subset of its corrupted entries. Our study rests heavily on a recently proposed tensor algebraic framework in which we can obtain tensor singular value decomposition (t-SVD) that is similar to the SVD for matrices, and define a new notion of tensor rank re...

متن کامل

Provable Models for Robust Low-Rank Tensor Completion

In this paper, we rigorously study tractable models for provably recovering low-rank tensors. Unlike their matrix-based predecessors, current convex approaches for recovering low-rank tensors based on incomplete (tensor completion) and/or grossly corrupted (tensor robust principal analysis) observations still suffer from the lack of theoretical guarantees, although they have been used in variou...

متن کامل

Tensor completion via a multi-linear low-n-rank factorization model

The tensor completion problem is to recover a low-n-rank tensor from a subset of its entries. The main solution strategy has been based on the extensions of trace norm for the minimization of tensor rank via convex optimization. This strategy bears the computational cost required by the singular value decomposition (SVD) which becomes increasingly expensive as the size of the underlying tensor ...

متن کامل

Provable Low-Rank Tensor Recovery

In this paper, we rigorously study tractable models for provably recovering low-rank tensors. Unlike their matrix-based predecessors, current convex approaches for recovering low-rank tensors based on incomplete (tensor completion) and/or grossly corrupted (tensor robust principal analysis) observations still suffer from the lack of theoretical guarantees, although they have been used in variou...

متن کامل

Hybrid Singular Value Thresholding for Tensor Completion

In this paper, we study the low-rank tensor completion problem, where a high-order tensor with missing entries is given and the goal is to complete the tensor. We propose to minimize a new convex objective function, based on log sum of exponentials of nuclear norms, that promotes the low-rankness of unfolding matrices of the completed tensor. We show for the first time that the proximal operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011